
Deflect Labs and Baskerville – Identifying 
attacks with Machine Learning
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Introduction – Why?

The need
  Manual identification and mitigation of (DDoS) 
attacks on websites is a difficult and time-
consuming task with many challenges

The goal
 Create a system to identify the attacks 
directed to Deflect protected websites as they 
happen and give the infrastructure the time to 
respond properly.
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Introduction - The 
challenges

• Be fast enough  to make it count

• Be able to  adapt to traffic

• Provide actionable info

• Provide reliable predictions

• As with any ML project: not enough labelled data

• Make the system as generic as possible



Baskerville - Introduction
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Baskerville - 
Architecture
Two main Components

 Engine

• Main log processing Pipelines

 Off-line analysis tools

• Model development
• Visualization
• Investigation

 
 Time-windowed – batch processing



Baskerville – Engine: 
Pipelines

Pipelines

• Base Pipeline for the basic flow
• Elastic Search Pipeline - to process logs from ES
• Raw Logs Pipeline - to process log files
• Kafka Pipeline - to process logs from Kafka



Baskerville – Engine
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Baskerville – Engine: 
Pipelines
Basic flow
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Baskerville – Features

eQualitie

Features and structure

Most of them are Updateable Features – 
they take past into account

 compute
 update

• Css to html ratio
• Image to html ratio
• Js to html ratio
• Minutes total
• Path depth average
• Path depth variance
• Payload size average
• Payload size log average
• Request interval average
• Request interval variance
• Request total
• Response 4xx to request ratio
• Top page to request ratio
• Unique path rate
• Unique path to request ratio
• Unique query rate
• Unique query to unique path 

ratio
• Unique UA rate
• …



Baskerville – Features
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Cache and Feature update - Taking past 
into account

• Keep track of one week of traffic at any point
• Two level cache - short-term (in memory) and 

long-term (parquet)



• ORM – SQLAlchemy
• Only inserts, no updates – except 

for the offline tools
• Data partitioning: per week of year
• Data archive / retention policy: keep 

data for one year
• Airflow to coordinate and schedule 

the database maintenance, create 
new partitions, detach old ones, 
archive.

Baskerville – Database
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• Prometheus with exporters for:
• Baskerville itself
• Spark
• Postgres
• Kafka
• and Prometheus and Grafana of course

• Grafana for visualization

Baskerville – 
Monitoring
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Baskerville – Offline 
tools
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Offline Analysis Tools
Model development and investigations

• Preprocess historic logs – Elastic Search / log 
files

• Preprocessing: Label training / testing sessions 
based on MISP database of attacks

• Training: Train novelty detection classifier on 
labelled sessions from historic logs

• Predicting: Classify sessions as malicious / benign 
using newly trained models

• Clustering: Group sessions based on their features 
to investigate botnets

• Visualization: Produce figures to aid model 
development and investigations



Baskerville – Offline 
tools
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Baskerville – Machine 
Learning
How we use Machine 
Learning:
• Novelty / Outlier 

detection algorithms – One 
Class SVM, Isolation Forest

• Lots of normal data
• Train on normal data – 

allowed to include a small 
amount of abnormal data

• Test on known past 
attacks

• Cross-reference results 
with Banjax bans



Baskerville – Machine 
Learning
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• 8 attacks in total considered
• Processed attack periods and normal traffic (separately) with 

Baskerville
• Train dataset: normal traffic
• Test dataset: a combination of normal and abnormal traffic

Precisi
on

0.90

Recall 0.86

F1 
score

0.88

• 90% of the IPs predicted as anomalous by 
Baskerville were also flagged by Banjax as 
malicious

• 88% of all the IPs flagged by Banjax as 
malicious were also identified as anomalous by 
Baskerville  

Isolation Forest

Processing the Attacks against Vietnamese Civil 
Society



Baskerville – Machine 
Learning
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Attack characteristics
• far fewer unique paths 

requested 
• a shorter average path depth
• a smaller variance in the depth 

of paths requested
• a lower payload size

Processing the Attacks against Vietnamese Civil 
Society



Baskerville – Machine 
Learning
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The overlap between the 
Banjax flag and the Baskerville 
prediction 

-1 indicates malicious
+1 indicates benign

Processing the Attacks against Vietnamese Civil 
Society
The need for a feedback mechanism



Baskerville – Machine 
Learning
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Baskerville is picking up more 
request sets as malicious than 
Banjax …

but does this indicate that 
Baskerville is too sensitive to 
anomalous behaviour, or that 
Baskerville is outperforming Banjax?

 

Processing the Attacks against Vietnamese Civil 
Society
The need for a feedback mechanism

Read the report comparing
human analysis vs baskerville

https://equalit.ie/deflect-labs-report-5-baskerville/


Baskerville – Machine 
Learning
What about Bias?

Perhaps there is a chance that people with slower internet 
connections display different than average browsing behaviour. 
So we need to be careful feature selection and a good 
training dataset with lots of examples of browsing.

To conclude

• So in general we are doing well, but there is a long way to go 
to properly evaluate the system and make sure we have low 
false positives and false negatives
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Baskerville – How do I 
use it?
• Just like any other Python project, 

download, pip install it, configure it and run 
it

• Docker compose for Baskerville itself and 
the peripheral components like Postgres, 
Kafka, Prometheus, Grafana and various 
exporters

• Script for setting up a stand-alone single 
node Spark cluster set up ( kubernetes - 
spark integration is still experimental in 
spark 2.4.0 )



Baskerville – Extensibility 
& Use cases
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From a user’s perspective: 
• You can set it up as a stand-alone analysis 

engine to process and analyze old logs in 
various forms and formats:
• text files
• Elastic Search
• through a queue / adapter

• Train models on own logs

From a developer’s perspective:
• Easy to enable / disable features - or create 

new ones
• Easy to extend the pipelines or add new 

ones



What is Baskerville – 
Use cases

DEFLECT 
LABS
     
BASKERVILL
E

info@equalit.ieeQualitie

4 5 6

78

data input
process store

monitorreply with insights

other web servers…

…

      publish logs in different topics e.g. apache.format, nginx.format etc.

2

transformation 
services:
small services that 
transform 
x.format to suitable 
Baskerville input

3

publish the transformed 
logs to the topic Baskerville 
listens

1



Dev deployment

• Consuming about 10% of average daily traffic (~3M requests)

• Multiplied by 10 on the Baskerville end to simulate the actual 
traffic

• Running on a standalone single node spark cluster with 1 
worker, 4 executors with 2 cores and 6GB RAM each.

• Performance tuning: Java GC, Spark parameters, worker numbers, 
database tuning …

• About 30M requests per day 

• Processing the data in a 2-minute time window within ~30sec – 
about ¼ of the time window

Model Development

• Feature selection, hyper-parameter optimization (Grid search)

• Training / Testing – gathering datasets and attacks

Baskerville - Current state
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Baskerville - Current state
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Baskerville: The next 
steps
• Deployment within April – Probation period

• Baskerville Dashboard 

• On-going model development

• Feedback mechanism

• Release and Open Source by the end of Q2

• Create the challenge / ban communication 
component

• Work on k8s deployment for the spark 
cluster*
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Baskerville - The next 
steps
Further down the road: Information 
Sharing and Analysis Center (ISAC)
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• Clients run part of 
Baskerville: the 
processing engine

• Prediction with the 
degree of confidence is 
served by ISAC

• Clients chose to use or 
not the prediction, e.g. 
ban or serve a challenge 
to the IP with 
the potentially malicious 
intent



Baskerville: The next 
steps
Further down the road: ISAC
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other web servers…

other web servers…

1
processing takes place at each client

clients send feature vectors for prediction

3 prediction

4    reply with result

5 depending on the result, the client
may decide to ban or serve a 
challenge or ignore  

6      feedback will help with model
      development

2



Baskerville: The next 
steps
Further down the road: ISAC

Pros

• No sensitive data sharing - just the feature 
vectors are enough

• With a feedback mechanism we will be able to 
expand the training dataset and improve the model

Cons & Challenges

• The size of the infrastructure to be fast enough

• Convert part of Baskerville - the processing engine - 
to a “plugin” that can be used on the client side
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Any Questions?

Website: https://docs.deflect.ca

GitHub: https://deflectca.github.io
 Twitter: @equalitie
 Email: info@equalit.ie
 Public launch: Fall 2019

https://docs.deflect.ca/
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